Affiliation:
1. Department of Maths , Zonguldak Bulent Ecevit University , Zonguldak , 67100 , Turkey
Abstract
Abstract
The main aim of this work is to investigate numerical solutions of the two different types of the fifth-order modified Kawahara equation namely bell-shaped soliton solutions and travelling wave solutions that occur thereby the different type of the Korteweg–de Vries equation. For this approach, we have used an effective and simple type of finite difference method namely Crank-Nicolson scheme for time integration and third-order modified cubic B-spline-based differential quadrature method for space integration. We preferred the third-order modified cubic B-splines to solve the fifth-order partial differential equation because of by using low energy, less algebraic process and produce better results than earlier works. To display the efficiency and accuracy of the present fresh approach famous test problems namely bell-shaped single soliton that has negative amplitude and travelling wave solutions that have the both of the positive and negative amplitudes are solved and the error norms L
2 and L
∞ are calculated and compared with earlier works. Comparison of the error norms show that present fresh approach obtained superior results than earlier works by using same parameters. At the same time, two lowest invariants of the test problems during the simulations are calculated and reported. Besides those, relative changes of invariants are computed and reported.
Subject
Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献