Affiliation:
1. Department of Basic Teaching and Research , Qinghai University , Xining 810016 , P. R. China
2. School of Mathematics and Statistics , Qinghai Nationalities University , Xining 810007 , P. R. China
Abstract
Abstract
In this paper, we study the number of classical positive radial solutions for Dirichlet problems of type
(P)
−
d
i
v
∇
u
1
−
|
∇
u
|
2
=
λ
f
(
u
)
in
B
1
,
u
=
0
on
∂
B
1
,
$$\left\{\begin{aligned}\hfill & -\mathrm{d}\mathrm{i}\mathrm{v}\left(\frac{\nabla u}{\sqrt{1-\vert \nabla u{\vert }^{2}}}\right)=\lambda f(u)\quad \text{in}\enspace {B}_{1},\hfill \\ \hfill & u=0\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \enspace \enspace \enspace \enspace \enspace \enspace \enspace \enspace \enspace \enspace \text{on}\enspace \partial {B}_{1},\enspace \hfill \end{aligned}\right.$$
where λ is a positive parameter,
B
1
=
{
x
∈
R
N
:
|
x
|
<
1
}
${B}_{1}=\left\{x\in {\mathbb{R}}^{N}:\vert x\vert {< }1\right\}$
, f : [0, ∞) → [0, ∞) is a continuous function. Using the fixed point index in a cone, we prove the results on both uniqueness and multiplicity of positive radial solutions of (P).
Subject
Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献