Local and parallel stabilized finite element methods based on full domain decomposition for the stationary Stokes equations

Author:

Zheng Bo1ORCID,Shang Yueqiang1ORCID

Affiliation:

1. School of Mathematics and Statistics , Southwest University , Chongqing , 400715 , P.R. China

Abstract

Abstract Based upon full domain decomposition, local and parallel stabilized finite element methods for the stationary Stokes equations are proposed and analysed, where the quadratic equal-order finite elements are employed for the velocity and pressure approximations, and a stabilized term based on two local Gauss integrations is used to offset the discrete pressure space to circumvent the discrete inf-sup condition. In the proposed parallel method, all of the computations are performed on the locally refined global grids that are fine around the interested subdomain and coarse elsewhere, making the method easy to implement based on a sequential solver with low communication cost. Stability and optimal error estimates of the present methods are deduced. Numerical results on examples including a problem with known analytic solution, lid-driven cavity flow, backward-facing step flow and flow around a cylinder are given to verify the theoretical predictions and demonstrate the high efficiency of the method. Results show that our parallel method can provide an approximate solution with the convergence rate of the same order as the solution computed by the standard stabilized finite element method, with a substantial reduction in computational time.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3