Dihedral group and classification of G-circuits of length 10

Author:

Bari Muhammad Nadeem1,Malik Muhammad Aslam1,Al-Kaseasbeh Saba2,Afzal Siddiqui Hafiz Muhammad3,Issakhov Alibek45,Rahimi-Gorji Mohammad6,Hassani Mohsan3

Affiliation:

1. Department of Mathematics , University of the Punjab, Quaid-e-Azam Campus , Lahore 54590 , Pakistan

2. Department of Mathematics , Faculty of Science, Tafila Technical University , Tafila , Jordan

3. Department of Mathematics , COMSATS University Islamabad , Lahore Campus , Lahore , Pakistan

4. Al-Farabi Kazakh National University , Almaty , Kazakhstan

5. Kazakh-British Technical University , Almaty , Kazakhstan

6. Faculty of Medicine and Health Sciences , Ghent University , 9000 Gent , Belgium

Abstract

Abstract In this paper, we classify G-circuits of length 10 with the help of the location of the reduced numbers lying on G-circuit. The reduced numbers play an important role in the study of modular group action on P S L ( 2 , Z ) $PSL(2,\mathbb{Z})$ -subset of Q ( m ) \ Q $Q(\sqrt{m}){\backslash}Q$ . For this purpose, we define new notions of equivalent, cyclically equivalent, and similar G-circuits in P S L ( 2 , Z ) $PSL(2,\mathbb{Z})$ -orbits of real quadratic fields. In particular, we classify P S L ( 2 , Z ) $PSL(2,\mathbb{Z})$ -orbits of Q ( m ) \ Q $Q(\sqrt{m}){\backslash}Q$ = k N Q * k 2 m $={\bigcup }_{k\in N}{Q}^{{\ast}}\left(\sqrt{{k}^{2}m}\right)$ containing G-circuits of length 10 and determine that the number of equivalence classes of G-circuits of length 10 is 41 in number. We also use dihedral group to explore cyclically equivalence classes of circuits and use cyclic group to explore similar G-circuits of length 10 corresponding to 10 of these circuits. By using cyclically equivalent classes of circuits and similar circuits, we obtain the exact number of G-orbits and the structure of G-circuits corresponding to cyclically equivalent classes. This study also helps us in classifying the reduced numbers lying in the P S L ( 2 , Z ) $PSL(2,\mathbb{Z})$ -orbits.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

Reference23 articles.

1. P. J. Cameron, Combinatorics, Topics, Techniques, Algorithms, Cambridge, Cambridge University Press, 1994.

2. S. M. Husnine, M. A. Aslam, and A. Majeed, “On ambiguous numbers of an invariant subset of under the action of the modular group PSL(2, Z),” Stud. Sci. Math. Hung., vol. 42, no. 4, pp. 401–412, 2005.

3. M. A. Aslam, S. M. Husnine, and A. Majeed, “Modular group action on certain quadratic fields,” Punjab Univ. J. Math., vol. 28, pp. 47–68, 1995.

4. A. Razaq, Q. Mushtaq, and A. Yousaf, “The number of circuits of length 4 in PSL(2, Z$\mathrm{Z}$)-Space,” Commun. Algebra, vol. 46, no. 12, pp. 5136–5145, 2018. https://doi.org/10.1080/00927872.2018.1461880.

5. Q. Mushtaq, A. Razaq, and A. Yousaf, “On contraction of vertices of the circuits in coset diagrams for PSL(2, Z)-Space,” Proc.: Math. Sci., vol. 129, no. 13, pp. 1–26, 2019. https://doi.org/10.1007/s12044-018-0450-z.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3