Ballistic Impact Characteristics of Flat-nose Projectile Penetrating Concrete and Soil Compound Target

Author:

Dong Yongxiang,Feng Shunshan,Huang Guangyan,Liu Chunmei,Xiao Lixing,Song Qing

Abstract

AbstractBallistic impact characteristics on the flat-nose projectile penetrating the concrete and soil compound target are studied. The deformation process and failure zone in the target are described by numerical simulation with finite element software. The results show that penetration depth, residual velocity and deceleration amplitude of flat-nose projectile increase with initial velocity. The features of concrete target after impact are approximately in agreement with experimental results. And the cracks and the tensile crush zone formed during penetration could characterize the damage and failure of target. Meanwhile, terminal ballistic characteristics of flat-nose projectile into single soil layer are studied to compare with that of concrete compound target. The results show that the overload of projectile penetrating hard-soil is only one-third of that of concrete compound target with low velocity. Reversely, the duration of the former is more than five times as long as the latter, and the rebound velocity of projectile penetrating soil medium is greater than the concrete compound target.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3