On the Mutual Effect of the Turbulent Dispersion Model and Thermophoresis on Nanoparticle Deposition

Author:

Mehel Amine,Sagot Benoit,Tanière Anne,Oesterlé Benoit

Abstract

AbstractNanoparticles applications, whether for pharmaceuticals, for environmental assessment or for evaluation of global climatic has led to the use of CFD tools to improve the understanding of their dynamical behaviour (transport, deposition and coagulation).Due to small particle sizes and low Stokes numbers, nanoparticles are typically considered to deposit at the wall as a combined result of Brownian motion and turbulent dispersion. To simulate these mechanisms in this work, the two-phase flow is computed using a RANS model (Reynolds Averaged Navier-Stokes) for the mean fluid properties, and a Lagrangian tracking approach for the dispersed phase in which the fluctuating fluid velocity at particle location, that ensures the particle turbulent dispersion, is predicted through a user implemented Langevin-based dispersion model.When a temperature gradient is present, the aerosol particles experience a thermophoretic force in addition to the drag and the Brownian forces. Depending on the temperature gradient and particle size, the thermophoretic force could become the predominant deposition mechanism. This size dependence makes it important to appropriately choose the turbulent dispersion model in wall-bounded turbulent flows. Actually, in most commercial codes, the turbulent dispersion of particles is predicted using the so-called Eddy Interaction Model (EIM), whose major drawback is that it cannot account for turbulence non-homogeneity, thus leading to some unphysical accumulation of low-inertia particles near the wall and therefore to an overestimation of the deposition velocity which is accentuated by thermophoresis. This study shows that turbulent and thermophoretic depositions are not completely independent, since thermophoresis enhances the deposition of particles which are sensitive to the turbulent dispersion model.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3