Two new iterative schemes to approximate the fixed points for mappings

Author:

Deshmukh Aniruddha1,Gopal Dhananjay2,Rakocević Vladimir3

Affiliation:

1. Department of Mathematics , Indian Institute of Technology , Indore 452020 , India

2. Department of Mathematics Guru Ghasidas Vishwavidyalaya , Bilaspur Chhattisgarh 495009 , India

3. Faculty of Sciences and Mathematics , University of Niš , Višegradska 33, 18000 Niš , Serbia

Abstract

Abstract In this article, we present a study of two iterative schemes to approximate the fixed points of enriched non-expansive maps and enriched generalized non-expansive maps. The schemes introduced in this article generalize those given by Thakur et al. in (“A new iterative scheme for approximating fixed points of nonexpansive mappings,” Filomat, vol. 30, no. 10, pp. 2711–2720, 2016.) and Ali et al. in (“Approximation of Fixed points for Suzuki’s generalized nonexpansive mappings,” Mathematics, vol. 7, no. 6, pp. 522–532, 2019.) in a sense that our schemes work for larger classes of enriched mappings and the schemes given by Thakur et al. and Ali et al. reduce to a particular case of our iterative techniques. Taking inspiration from Berinde (“Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators,” Fixed Point Theory Appl., vol. 2004, no. 2, pp. 97–105, 2004.) and Maniu (“On a three-step iteration process for Suzuki mappings with qualitative study,” Numer. Funct. Anal. Optim., 2020.), we also give stability results of the our procedures for enriched contractions (introduced by Berinde in 2019). Lastly, we compare the rate of convergence of our schemes with each other and the conventional Krasnoselskii iteration process used for approximating fixed points of enriched contractions along with some examples. As an application to the proposed iterative schemes, we give a few results on the solutions of linear system of equations.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

Reference38 articles.

1. W. R. Mann, “Mean value methods in iteration,” Proc. Am. Math. Soc., vol. 4, no. 3, pp. 506–510, 1953. https://doi.org/10.1090/s0002-9939-1953-0054846-3.

2. S. Ishikawa, “Fixed points by a new iteration methods,” Proc. Am. Math. Soc., vol. 44, no. 1, pp. 141–150, 1974. https://doi.org/10.1090/s0002-9939-1974-0336469-5.

3. M. A. Noor, “New approximation schemes for general variational inequalities,” J. Math. Anal. Appl., vol. 251, no. 1, pp. 217–229, 2000. https://doi.org/10.1006/jmaa.2000.7042.

4. R. Agarwal and D. R. Sahu, “Iterative construction of fixed points of nearly asymptotically nonexpansive mappings,” J. Nonlinear Convex Anal., vol. 8, no. 1, pp. 61–79, 2007.

5. M. Abbas and T. Nazir, “A new faster iteration process applied to constrained minimization and feasibility problems,” Mat. Vesn., vol. 66, no. 2, pp. 223–234, 2014.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3