Numerical Study of the Discharged Heat Water Effect on the Aquatic Environment from Thermal Power Plant by using Two Water Discharged Pipes

Author:

Issakhov Alibek1

Affiliation:

1. al-Farabi Kazakh National University, av. al-Farabi 71, 050040Almaty, Kazakhstan

Abstract

AbstractThe paper presents a numerical study of the discharged heat water effect on the aquatic environment from the thermal power plant by using two water discharged pipes. It is solved by the Navier–Stokes and temperature transport equations for an incompressible fluid in a stratified medium. The aim of this study is to improve the existing water discharge system to reduce the heat load on the reservoir-cooler of the thermal power plants operation (Ekibastuz SDPP-1). In this study thermal pollution to the reservoir-cooler using only two water discharged pipes as so using the existing one and building only one additional in the eastern part of the reservoir-cooler is numerically simulated. The numerical method is based on the projection method which was approximated by the finite volume method. The numerical solution of the equation system is divided into four stages. The algorithm is parallelized on a high-performance computer. The obtained numerical results of three-dimensional stratified turbulent flow for two water discharged pipes of the thermal power plant were compared with experimental data and with numerical results for one water discharged pipe. General thermal load in the reservoir-cooler decreases comparing one water discharged pipe and revealed qualitatively and quantitatively approximately the basic laws of hydrothermal processes occurring in the reservoir-cooler can be seen that from numerical simulations where two water discharged pipes were used.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3