Adaptive ADI difference solution of quenching problems based on the 3D convection–reaction–diffusion equation

Author:

Zhu Xiaoliang12,Ge Yongbin1

Affiliation:

1. Institute of Applied Mathematics and Mechanics, Ningxia University , Yinchuan 750021 , China

2. School of Software, Xinjiang University , Ürümqi 830008 , China

Abstract

Abstract The 3D quenching problem reflecting solid-burn scene based on convection–reaction–diffusion equation is creatively concerned in this work. The spatial derivatives of original equation are discretized by Taylor series and the temporal derivatives are approximated by the Crank–Nicolson (CN) method. After the discrete schemes are arranged, an alternating direction implicit (ADI) scheme on adaptive grid is constructed to interpret quenching phenomena of the three-dimension (3D) equation with singularity source. Quenching time, quenching domain, and characteristics relative to temperature as well as variation of temperature over time are achieved via scientific experiment and analysis. Comparing with the 1D or 2D problem, it is harder for the 3D problem to produce quenching phenomena. Regardless of different convection functions, it can form quenching behaviors through experiments when only the elements which include degeneracy parameter, convection parameters, and domain sizes are configured properly. We hope all this can offer references for the 3D engineering problem. At the same time, it will offer support to research the relationship between quenching phenomena and degeneracy parameter, convection parameters, and domain sizes in the future, respectively.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3