Frequency responses for induced neural transmembrane potential by electromagnetic waves (1 kHz to 1 GHz)

Author:

Bakhtiary Zahra Hajizadeh1ORCID,Saviz Mehrdad1

Affiliation:

1. Biomedical Engineering Department , Amirkabir University of Technology (Tehran Polytechnic) , Tehran , Iran

Abstract

Abstract Many biophysical effects of electromagnetic radiation are interpreted based on the induced voltage on cellular membranes. It is very instructive to study wideband frequency responses showing how an impinging electromagnetic wave carrying a certain time waveform translates into a time-dependent change in the cell-membrane potentials in any desired tissue. A direct numerical solution of this problem with realistic models for the body and cells results in meshcells of nanometer dimensions, which is unaffordable for almost any computing machine. In this paper, we exploit a multiscale method with serial frequency responses to arrive at the final frequency response for the induced transmembrane potential changes in cerebral cells induced by electromagnetic waves incident on the body. The results show a bandpass characteristic; a frequency window of approximately 10 kHz to 100 MHz as the most sensitive frequency band for neuronal membrane sensing of external electromagnetic fields.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3