Elimination of Ammonium Ion from the a-Hydroxyalkyl Radicals of Serine and Threonine in Aqueous Solution and the Difference in the Reaction Mechanism

Author:

Behrens Günter1,Koltzenburg Günther1

Affiliation:

1. Max-Planck-Institut für Strahlenchemie, Stiftstraße 34—36, D-4330 Mülheim a.d. Ruhr 1, Bundesrepublik Deutschland

Abstract

Abstract The zwitterionic radicals HO-ĊH-CH(COO-)NH3 + (4a) and HO-Ċ(CH3)-CH(COO-)NH3 + (4b) are the main species produced upon OH· radical attack in aqueous solutions at pH 3-7 at the amino acids serine, HO-CH2-CH(COO-)NH3 +, or threonine, HO-CH(CH3)-CH(COO-)NH3 +, respectively. Both radicals undergo elimination of NH4 + ion to form the radicals O=CH-ĊH-COO- (7) or CH3-CO-ĊH-COO- (9) respectively. The pKa of the serine-derived cationic radical HO-ĊH-CH(COOH)NH3 + (3a) (3a ⇄ 4a + H+), was determined by ESR spectroscopy to 2.2 ± 0.1 at 276 K. From kinetic data the pKa(OH) of radical 4a (4a ⇄ O-ĊH-CH(COO-)NH3 + (5a) + H+) was calculated to 7.0. The elimination of NH3 takes place from the ketyl radical 5a (type-B mechanism), the rate constant was calculated from kinetic data to 2.4 × 106 s-1 at 290 K. The half-lives of radicals 4a and 4b were measured by time-resolved conductivity changes upon pulse radiolysis, 170 ± 10 μs for 4a and 26 ± 2 μs for 4b, at 290 K and pH 5.8 . With the threonine derived radicals elimination of NH3 takes place at the stage of the α-hydroxyalkyl radical 4b (type-A mechanism). In this series the pKa of the product radical CH3-CO-ĊH-COOH (8) (8 ⇄ 9 + H+), was determined by ERS spectroscopy to 2.7 ± 0.1. The reasons for the observed mechanistic differences (type-A versus type-B decay) are discussed. As further examples for a type-B decay some preliminary data on the elimination of HF from the radicals CF3-Ċ(OH)-CF3 and CF3-ĊH-OH have been added.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3