Equi-topological entropy curves for skew tent maps in the square

Author:

Buczolich Zoltán1,Keszthelyi Gabriella1

Affiliation:

1. Department of Analysis Eötvös Loránd University Pázmány Péter Sétány 1/c 1117 Budapest Hungary

Abstract

Abstract We consider skew tent maps T α, β (x) such that (α,β)∈[0,1]2 is the turning point of TT α, β , that is, T α, β = β α $\begin{array}{} \frac{{\beta}}{{\alpha}} \end{array} $ x for 0≤ xα and T α, β (x) = β 1 α $\begin{array}{} \frac{{\beta}}{1- {\alpha}} \end{array} $ (1−x) for α < x ≤ 1. We denote by M = K(α,β) the kneading sequence of TT α, β and by h(α,β) its topological entropy. For a given kneading squence M we consider equi-kneading, (or equi-topological entropy, or isentrope) curves (α,φ M (α)) such that K(α,φ M (α)) = M . To study the behavior of these curves an auxiliary function Θ M (α,β) is introduced. For this function Θ M (α,φ M (α)) = 0, but it may happen that for some kneading sequences Θ M (α,β) = 0 for some β < φ M (α) with (α,β) still in the dynamically interesting quarter of the unit square. Using Θ M we show that the curves (α,φ M (α)) hit the diagonal {(β,β): 0.5 < β < 1} almost perpendicularly if (β,β) is close to (1,1). Answering a question asked by M. Misiurewicz at a conference we show that these curves are not necessarily exactly orthogonal to the diagonal, for example for M = RLLRC the curve (α,φ M (α)) is not orthogonal to the diagonal. On the other hand, for M = RLC it is. With different parametrization properties of equi-kneading maps for skew tent maps were considered by J. C. Marcuard, M. Misiurewicz and E. Visinescu.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference15 articles.

1. Alsedà, L.—Mañosas, F.: The monotonicity of the entropy for a family of degree one circle maps, Trans. Am. Math. Soc. 334 (1992), 651–684.10.1090/S0002-9947-1992-1129433-5

2. Bassein, S.: Dynamics of a family of one-dimensional maps, Amer. Math. Monthly 105 (1998), 118–130.10.2307/2589643

3. Billings, L.—Bollt, E. M.: Probability density functions of some skew tent maps, Chaos Solitons Fractals 12 (2001), 365–376.10.1016/S0960-0779(99)00204-0

4. Bruin, H.—van Strien, S.: Monotonicity of entropy for real multimodal maps, preprint 2009, revised version of December 2013 - to appear in Journ. Amer. Math. Soc.

5. Buczolich, Z.—Keszthelyi, G.: Monotonicity of equi-topological entropy curves for skew tent maps in the square I., in preparation.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Differentiable Conjugacies for One-Dimensional Maps;Springer Proceedings in Mathematics & Statistics;2024

2. Isentropes and Lyapunov exponents;Discrete & Continuous Dynamical Systems - A;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3