Idempotents, group membership and their applications

Author:

Porubský Štefan12

Affiliation:

1. Institute of Computer Science , Academy of Sciences of the Czech Republic , Pod Vodárenskou věží 2, 1802 07 , Prague , Czech Republic

2. Department of Mathematics Faculty of Sciences , University of Ostrava , 30. dubna 22, 701 03 , Ostrava 1 , Czech Republic

Abstract

Abstract Š. Schwarz in his paper [SCHWARZ, Š.: Zur Theorie der Halbgruppen, Sborník prác Prírodovedeckej fakulty Slovenskej univerzity v Bratislave, Vol. VI, Bratislava, 1943, 64 pp.] proved the existence of maximal subgroups in periodic semigroups and a decade later he brought into play the maximal subsemigroups and thus he embodied the idempotents in the structural description of semigroups [SCHWARZ, Š.: Contribution to the theory of torsion semigroups, Czechoslovak Math. J. 3(1) (1953), 7–21]. Later in his papers he showed that a proper description of these structural elements can be used to (re)prove many useful and important results in algebra and number theory. The present paper gives a survey of selected results scattered throughout the literature where an semigroup approach based on tools like idempotent, maximal subgroup or maximal subsemigroup either led to a new insight into the substance of the known results or helped to discover new approach to solve problems. Special attention will be given to some disregarded historical connections between semigroup and ring theory.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference218 articles.

1. Abrhan, I.: On prime ideals in groupoids and in multiplicative semigroups of residue classes (mod m), Math. Slovaca 34 (1984), 121–133 (in Russian).

2. Alahmadi, A.—Jain, S. K.—Leroy, A.: Decomposition of singular matrices into idempotents, Linear Multilinear Algebra 62(1) (2014), 13–27.

3. Alomair, B.—Clark, A.—Poovendran, R.: The power of primes: security of authentication based on a universal hash-function family, J. Math. Cryptol. 4(2) (2010), 121–148.

4. Arbib, M. A. (ed.): Algebraic Theory of Machines, Languages, and Semigroups, Academic Press, New York and London, 1968.

5. Autonne, L.: Sur certains groupes linéaires, C. R. Math. Acad. Sci. Paris 143 (1907), 670–672.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3