Affiliation:
1. Department of Algebra and Geometry Palacký University Olomouc 17. listopadu 12 CZ–771 46 Olomouc Czech Republic
2. Institute of Discrete Mathematics and Geometry TU Wien Wiedner Hauptstraße 8-10 A–1040 Vienna Austria
Abstract
Abstract
Non-associative MV-algebras (NMV-algebras) (A, ⊕, ¬, 0) were introduced in [CHAJDA, I.—KÜHR, J.: A non-associative generalization of MV-algebras, Math. Slovaca 57 (2007), 301–312]. In the present paper we prove some properties of these algebras, investigate when intervals of the form [a, 1] can be made into NMV-algebras in some natural way and consider idempotent elements and derivations of NMV-algebras. Moreover, we study decompositions of NMV-algebras and characterize the congruences on NMV-algebras by means of so-called filters.
Reference9 articles.
1. Alshehri, N. O.: Derivations of MV-algebras, Internat. J. Math. Math. Sci. (2010), Art. ID 312027, 7 pp.
2. Botur, M.—Halaš, R.: Commutative basic algebras and non-associative fuzzy logics, Arch. Math. Logic 48 (2009), 243–255.10.1007/s00153-009-0125-7
3. Chajda, I.—Eigenthaler, G.—Länger, H.: Congruence Classes in Universal Algebra, Heldermann, Lemgo, 2012.
4. Chajda, I.—Kühr, J.: A non-associative generalization of MV-algebras, Math. Slovaca 57 (2007), 301–312.
5. Cignoli, R. L. O.—D’ottaviano, I. M. L.—Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Trends Log. Stud. Log. Libr., Kluwer, Dordrecht, 2000.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Study strong Sheffer stroke non-associative MV-algebras by fuzzy filters;Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics;2022-03-31
2. Filters of strong Sheffer stroke non-associative MV-algebras;Analele Universitatii "Ovidius" Constanta - Seria Matematica;2021-03-01
3. Residuation in non-associative MV-algebras;Mathematica Slovaca;2018-11-20
4. Operations and structures derived from non-associative MV-algebras;Soft Computing;2018-06-15