A modification of a problem of Diophantus

Author:

Harrington Joshua1,Jones Lenny2

Affiliation:

1. Department of Mathematics, Cedar Crest College Allentown , Pennsylvania , USA

2. Department of Mathematics , Shippensburg University , 1871 Old Main Drive Shippensburg , Pennsylvania , USA

Abstract

Abstract An old question, due to Diophantus, asks to find sets of rational numbers such that 1 added to the product of any two elements from the set is a square. We are concerned here with a modification of this question. Let t ≥ 2 be an integer, and let 𝔽 be a field. For d ∈ 𝔽, define f t,d : 𝔽 t → 𝔽 as f t , d ( x 1 , x 2 , , x t ) := x 1 x 2 x t + d . $$\begin{array}{} \displaystyle f_{t,d}(x_1,x_2,\ldots,x_{t}):=x_1x_2\cdots x_{t}+d. \end{array}$$ For any nonempty subset S of 𝔽, we say S is f t , d c l o s e d if f t , d ( x 1 , x 2 , , x t ) : x i S  and distinct S . $$\begin{array}{} \displaystyle S ~~\text{is}~~ {f_{t,d}-closed} ~~\text{if}~~ \left\{f_{t,d}(x_1,x_2,\ldots,x_{t}):x_i\in S\text{ and distinct}\right\}\subseteq S. \end{array}$$ For any integer n, with tn≤ |𝔽|, let 𝒰(n,t,d) be the union of all f t,d -closed subsets S of 𝔽 with |S|=n. In this article, we investigate values of n,t,d for which 𝒰(n,t,d) = 𝔽, with particular focus on t = n – 1, where n ∈ {3,4}. Moreover, if 𝒰(n,t,d)≠ 𝔽, we determine in many cases the exact elements of the set 𝔽∖ 𝔽(n,t,d).

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference7 articles.

1. Dujella, A.: There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183–214.

2. Dujella, A.—Kazalicki, M.—Mikić, M.—Sziksza, M.: There are infinitely many rational Diophantine sextuples, arXiv:1507.00569.

3. Elsholtz, C.—Filipin, A.—Fujita, Y.: On Diophantine quintuples and D(-1)-quadruples, Monatsh. Math. 175(2) (2014), 227–239.

4. Filipin, A.—Fujita, Y.: The number of Diophantine quintuples II, Publ. Math. Debrecen 82(2) (2013), 293–308.

5. Harrington, J.—Jones, L.: A problem of Diophantus modulo a prime, Irish Math. Soc. Bull. 77 (2016), 45–49.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3