Affiliation:
1. Institute of Mathematics Faculty of Mechanical Engineering , Brno University of Technology , Technická , 616 69 Brno , Czech Republic
Abstract
Abstract
Let D ∈ ℤ and let CD
be the set of all monic cubic polynomials with integer coefficients having a discriminant equal to D. In this paper, we devise a general method of establishing whether, for a prime p, all polynomials in CD
have the same type of factorization over the Galois field
F
p
$\Bbb F_p$
.
Reference10 articles.
1. Klaška, J.—Skula, L.: Mordell’s equation and the Tribonacci family, Fibonacci Quart. 49(4) (2011), 310-319.
2. Klaška, J.—Skula, L.: Law of inertia for the factorization of cubic polynomials - the real case, Util. Math. 102 (2017), 39-50.
3. Klaška, J.—Skula, L.: Law of inertia for the factorization of cubic polynomials - the imaginary case, Util. Math. 103 (2017), 99-109
4. Klaška, J.—Skula, L.: Law of inertia for the factorization of cubic polynomials - the case of discriminants divisible by three, Math. Slovaca 66(4) (2016), 1019-1027.
5. Klaška, J.—Skula, L.: Law of inertia for the factorization of cubic polynomials - the case of primes 2 and 3, Math. Slovaca 67(1) (2017), 71-82.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献