Affiliation:
1. Department of Mathematics University of Iowa , 14 MacLean Hall , Iowa City , USA
Abstract
Abstract
In this paper we define and study the weak pseudo-BCK algebras as generalizations of weak BCK-algebras, extending some results given by Cı⃖rulis for weak BCK-algebras. We give some characterizations of weak pseudo-BCK algebras and we prove that a weak pseudo-BCK algebra satisfying the right distribution laws is a BCK-algebra. We define the class of commutative weak pseudo-BCK algebras, and we give equivalent definitions and characterization theorems for commutative weak pseudo-BCK algebras. The classes of quasi pseudo-BCK algebras and weak pseudo-BCK(E) algebras are introduced and a characterization theorem for quasi pseudo-BCK algebras is given. We prove that any weak pseudo-BCK(E) algebra is a pseudo-BE algebra and the class of commutative weak pseudo-BCK(E) algebras is equivalent to the class of commutative pseudo-BCK algebras.
Reference19 articles.
1. Borumand Saeid, A.: Smarandache BE-algebras, Education Publisher, Columbus, Ohio, USA, 2013.
2. Borzooei, R. A.—Borumand Saeid, A.—Rezaei, A.—Radfar, A.—Ameri, R.: On pseudo-BE algebras, Discuss. Math. Gen. Algebra Appl. 33 (2013), 95–108.
3. Borzooei, R. A.—Borumand Saeid, A.—Rezaei, A.—Radfar, A.—Ameri, R.: On distributive pseudo BE–algebras, Fasc. Math. 54(1) (2015), 21–39.
4. Cīrulis, J.: On commutative weak BCK-algebras, arXiv:1304.0999v2 [math.LO]
5. Cīrulis, J.: On some classes of commutative weak BCK-algebras, Studia Logica 103(3) (2015), 479–490.