Affiliation:
1. Department of Mathematics Faculty of Science and Letters Kafkas University Kars Turkey
Abstract
Abstract
In this paper, we introduce and investigate the following subclass
1
+
1
γ
z
f
′
(
z
)
+
λ
z
2
f
″
(
z
)
λ
z
f
′
(
z
)
+
(
1
−
λ
)
f
(
z
)
−
1
≺
φ
(
z
)
0
≤
λ
≤
1
,
γ
∈
C
∖
{
0
}
$$\begin{array}{}
\displaystyle 1+\frac{1}{\gamma }\left( \frac{zf'(z)+\lambda z^{2}f''(z)}{\lambda zf'(z)+(1-\lambda )f(z)}-1\right) \prec
\varphi (z)\qquad\left( 0\leq \lambda \leq 1,\gamma \in
\mathbb{C}
\smallsetminus \{0\}\right)
\end{array} $$
of analytic functions, φ is an analytic function with positive real part in the unit disk 𝔻, satisfying φ (0) = 1, φ '(0) > 0, and φ (𝔻) is symmetric with respect to the real axis. We obtain the upper bound of the second Hankel determinant | a2a4−
a
3
2
$\begin{array}{}
a^2_3
\end{array} $
| for functions belonging to the this class is studied using Toeplitz determinants. The results, which are presented in this paper, would generalize those in related works of several earlier authors.
Reference14 articles.
1. Ali, R. M.—Lee, S. K.—Ravichandran, V.—Supramaniam, S.: The Fekete-Szegö coefficient functional for transforms of analytic functions, Bull. Iranian Math. Soc. 35 (2009), 119–142.
2. Cantor, D. G.: Power series with integral coefficients, Bull. Amer. Math. Soc. 69 (1963), 362–366.10.1090/S0002-9904-1963-10923-4
3. Deniz, E.—çağlar, M.—Orhan, H.: The Fekete-Szegö problem for a class of analytic functions defined by Dziok-Srivastava operator, Kodai Math. J. 35 (2012), 439–462.10.2996/kmj/1352985448
4. Duren, P. L.: Univalent Functions. Grundlehren Math. Wiss. 259, Springer, New York, 1983.
5. Fekete, M.—Szegö, G.: Eine Bemerkung uber ungerade schlichte Funktionen, J. London Math. Soc. 8 (1933), 85–89.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献