Rough weighted 𝓘-limit points and weighted 𝓘-cluster points in θ-metric space

Author:

Ghosal Sanjoy1,Ghosh Avishek2

Affiliation:

1. Department of Mathematics , University of North Bengal , Rajarammohunpur, Darjeeling-734013 , West Bengal , India

2. Department of Mathematics , Jadavpur University , Kolkata-700032 , West Bengal , India

Abstract

Abstract In 2018, Das et al. [Characterization of rough weighted statistical statistical limit set, Math. Slovaca 68(4) (2018), 881–896] (or, Ghosal et al. [Effects on rough 𝓘-lacunary statistical convergence to induce the weighted sequence, Filomat 32(10) (2018), 3557–3568]) established the result: The diameter of rough weighted statistical limit set (or, rough weighted 𝓘-lacunary limit set) of a sequence x = {xn } n∈ℕ is 2 r lim inf n A t n $\begin{array}{} \frac{2r}{{\liminf\limits_{n\in A}} t_n} \end{array}$ if the weighted sequence {tn } n∈ℕ is statistically bounded (or, self weighted 𝓘-lacunary statistically bounded), where A = {k ∈ ℕ : tk < M} and M is a positive real number such that natural density (or, self weighted 𝓘-lacunary density) of A is 1 respectively. Generally this set has no smaller bound other than 2 r lim inf n A t n $\begin{array}{} \frac{2r}{{\liminf\limits_{n\in A}} t_n} \end{array}$ . We concentrate on investigation that whether in a θ-metric space above mentioned result is satisfied for rough weighted 𝓘-limit set or not? Answer is no. In this paper we establish infinite as well as unbounded θ-metric space (which has not been done so far) by utilizing some non-trivial examples. In addition we introduce and investigate some problems concerning the sets of rough weighted 𝓘-limit points and weighted 𝓘-cluster points in θ-metric space and formalize how these sets could deviate from the existing basic results.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ROUGH IDEAL CONVERGENCE OF DOUBLE SEQUENCES IN INTUITIONISTIC FUZZY NORMED SPACES;FACTA UNIV-SER MATH;2024

2. Approximity of asymmetric metric spaces;Mathematica Slovaca;2022-10-01

3. The degree of roughness;Topology and its Applications;2022-02

4. Rough weighted I-αβ-statistical convergence in locally solid Riesz spaces;Journal of Mathematical Analysis and Applications;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3