Affiliation:
1. Department of Mathematics , Lorestan University , P.O. Box 465 , Khoramabad , Iran
Abstract
Abstract
In this paper, we present numerous refinements of the Young inequality by the Kantorovich constant. We use these improved inequalities to establish corresponding operator inequalities on a Hilbert space and some new inequalities involving the Hilbert-Schmidt norm of matrices. We also give some refinements of the following Heron type inequality for unitarily invariant norm |||⋅||| and A, B, X ∈ Mn
(ℂ):
|
|
|
A
ν
X
B
1
−
ν
+
A
1
−
ν
X
B
ν
2
|
|
|
≤
(
4
r
0
−
1
)
|
|
|
A
1
2
X
B
1
2
|
|
|
+
2
(
1
−
2
r
0
)
|
|
|
(
1
−
α
)
A
1
2
X
B
1
2
+
α
(
A
X
+
X
B
2
)
|
|
|
,
$$\begin{array}{}
\begin{split}
\displaystyle
\Big|\Big|\Big|\frac{A^\nu XB^{1-\nu}+A^{1-\nu}XB^\nu}{2}\Big|\Big|\Big|
\leq &(4r_0-1)|||A^{\frac{1}{2}}XB^{\frac{1}{2}}|||
\\
&+2(1-2r_0)\Big|\Big|\Big|(1-\alpha)A^{\frac{1}{2}}XB^{\frac{1}{2}}
+\alpha\Big(\frac{AX+XB}{2}\Big)\Big|\Big|\Big|,
\end{split}
\end{array}$$
where
1
4
≤
ν
≤
3
4
,
α
∈
[
1
2
,
∞
)
$\begin{array}{}
\displaystyle
\frac{1}{4}\leq \nu \leq \frac{3}{4}, \alpha \in [\frac{1}{2},\infty )
\end{array}$
and r
0 = min{ν, 1 – ν}.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献