Affiliation:
1. Faculty of Civil and Geodetic Engineering , University of Ljubljana , Kongresni trg 12 SLO-1000 , Ljubljana , Slovenia
Abstract
Abstract
For the period T(α) of a simple pendulum with the length L and the amplitude (the initial elongation) α ∈ (0, π), a strictly increasing sequence Tn
(α) is constructed such that the relations
T
1
(
α
)
=
2
L
g
π
−
2
+
1
ϵ
ln
1
+
ϵ
1
−
ϵ
+
π
4
−
2
3
ϵ
2
,
T
n
+
1
(
α
)
=
T
n
(
α
)
+
2
L
g
π
w
n
+
1
2
−
2
2
n
+
3
ϵ
2
n
+
2
,
$$\begin{array}{c}
\displaystyle
T_1(\alpha)=2\sqrt{\frac{L}{g}}\left[\pi-2+\frac{1}{\epsilon}
\ln\left(\frac{1+\epsilon}{1-\epsilon}\right)+\left(\frac{\pi}{4}-\frac{2}{3}\right)\epsilon^2\right],\\
\displaystyle T_{n+1}(\alpha)=T_n(\alpha)+2\sqrt{\frac{L}{g}}\left(\pi w_{n+1}^2
- \frac{2}{2n+3}\right)\epsilon^{2n+2},
\end{array}$$
and
0
<
T
(
α
)
−
T
n
(
α
)
T
(
α
)
<
2
ϵ
2
n
+
2
π
(
2
n
+
1
)
,
$$\begin{array}{}
\displaystyle
0 \lt \frac{T(\alpha)-T_n(\alpha)}{T(\alpha)} \lt \frac{2\epsilon^{2n+2}}{\pi(2n+1)}\,,
\end{array}$$
holds true, for α ∈ (0, π), n ∈ ℕ,
w
n
:=
∏
k
=
1
n
2
k
−
1
2
k
$\begin{array}{}
\displaystyle
w_n:=\prod_{k=1}^n\frac{2k-1}{2k}
\end{array}$
(the nth Wallis’ ratio) and ϵ = sin(α/2).
Reference41 articles.
1. Abramowitz, M.—Stegun, I. A.: Handbook of Mathematical Functions, 9th edn., Dover Publications, New York, 1974.
2. Adlaj, S.: An eloquent formula for the perimeter of an ellipse, Notices of the AMS 59 (2012), 1094–1099.
3. Almkvist, G.—Berndt, B.: Gauss, Landen, Ramanujan, the arithmetic–geometric mean, ellipses, π, and the Ladies Diary, Amer. Math. Monthly 95 (1988), 585–608.
4. Amrani, D.—Paradis, P.—Beaudin, M.: Approximation expressions for the large-angle period of a simple pendulum revisited, Rev. Mex. Fís. E 54 (2008), 59–64.
5. Beléndez, A. et al.: Analytical approximations for the period of a nonlinear pendulum, Eur. J. Phys. 27 (2006), 539–551.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献