How is the period of a simple pendulum growing with increasing amplitude?

Author:

Lampret Vito1

Affiliation:

1. Faculty of Civil and Geodetic Engineering , University of Ljubljana , Kongresni trg 12 SLO-1000 , Ljubljana , Slovenia

Abstract

Abstract For the period T(α) of a simple pendulum with the length L and the amplitude (the initial elongation) α ∈ (0, π), a strictly increasing sequence Tn (α) is constructed such that the relations T 1 ( α ) = 2 L g π 2 + 1 ϵ ln 1 + ϵ 1 ϵ + π 4 2 3 ϵ 2 , T n + 1 ( α ) = T n ( α ) + 2 L g π w n + 1 2 2 2 n + 3 ϵ 2 n + 2 , $$\begin{array}{c} \displaystyle T_1(\alpha)=2\sqrt{\frac{L}{g}}\left[\pi-2+\frac{1}{\epsilon} \ln\left(\frac{1+\epsilon}{1-\epsilon}\right)+\left(\frac{\pi}{4}-\frac{2}{3}\right)\epsilon^2\right],\\ \displaystyle T_{n+1}(\alpha)=T_n(\alpha)+2\sqrt{\frac{L}{g}}\left(\pi w_{n+1}^2 - \frac{2}{2n+3}\right)\epsilon^{2n+2}, \end{array}$$ and 0 < T ( α ) T n ( α ) T ( α ) < 2 ϵ 2 n + 2 π ( 2 n + 1 ) , $$\begin{array}{} \displaystyle 0 \lt \frac{T(\alpha)-T_n(\alpha)}{T(\alpha)} \lt \frac{2\epsilon^{2n+2}}{\pi(2n+1)}\,, \end{array}$$ holds true, for α ∈ (0, π), n ∈ ℕ, w n := k = 1 n 2 k 1 2 k $\begin{array}{} \displaystyle w_n:=\prod_{k=1}^n\frac{2k-1}{2k} \end{array}$ (the nth Wallis’ ratio) and ϵ = sin(α/2).

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference41 articles.

1. Abramowitz, M.—Stegun, I. A.: Handbook of Mathematical Functions, 9th edn., Dover Publications, New York, 1974.

2. Adlaj, S.: An eloquent formula for the perimeter of an ellipse, Notices of the AMS 59 (2012), 1094–1099.

3. Almkvist, G.—Berndt, B.: Gauss, Landen, Ramanujan, the arithmetic–geometric mean, ellipses, π, and the Ladies Diary, Amer. Math. Monthly 95 (1988), 585–608.

4. Amrani, D.—Paradis, P.—Beaudin, M.: Approximation expressions for the large-angle period of a simple pendulum revisited, Rev. Mex. Fís. E 54 (2008), 59–64.

5. Beléndez, A. et al.: Analytical approximations for the period of a nonlinear pendulum, Eur. J. Phys. 27 (2006), 539–551.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Heteroclinic Bifurcation in a Motion of Pendulum: Numerical-Topological Approach;International Journal of Applied and Computational Mathematics;2022-04-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3