More on closed non-vanishing ideals in CB (X)

Author:

Khademi Amin1

Affiliation:

1. Department of Mathematical Sciences , Isfahan University of Technology , Isfahan , 84156–83111 , Iran

Abstract

Abstract Let X be a completely regular topological space. For each closed non-vanishing ideal H of CB (X), the normed algebra of all bounded continuous scalar-valued mappings on X equipped with pointwise addition and multiplication and the supremum norm, we study its spectrum, denoted by 𝔰𝔭(H). We make a correspondence between algebraic properties of H and topological properties of 𝔰𝔭(H). This continues some previous studies, in which topological properties of 𝔰𝔭(H) such as the Lindelöf property, paracompactness, σ-compactness and countable compactness have been made into correspondence with algebraic properties of H. We study here other compactness properties of 𝔰𝔭(H) such as weak paracompactness, sequential compactness and pseudocompactness. We also study the ideal isomorphisms between two non-vanishing closed ideals of CB (X).

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference14 articles.

1. Aliabad, A. R.—Azarpanah, F.—Namdari, M.: Rings of continuous functions vanishing at infinity, Comment. Math. Univ. Carolin. 45(3) (2004), 519–533.

2. Behrends, E.: M-Structure and the Banach-Stone Theorem, Springer, Berlin, 1979.

3. Engelking, R.: General Topology, Second edition, Heldermann Verlag, Berlin, 1989.

4. Farhadi, M.—Koushesh, M. R.: A Gelfand-Naimark type theorem, Topology Appl. 228 (2017), 145–157.

5. Farhadi, M.—Koushesh, M. R.: On closed subalgebras of CB(X), Houston J. Math. 45(4) (2019), 1197–1207.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3