Recurrences for the genus polynomials of linear sequences of graphs

Author:

Chen Yichao1,Gross Jonathan L.2,Mansour Toufik3,Tucker Thomas W.4

Affiliation:

1. School of Mathematics and Physics , SuZhou University of Science and Technology , 215009 , SuZhou , China

2. Department of Computer Science , Columbia University New York , NY 10027 , USA

3. Department of Mathematics , University of Haifa , 3498838 , Haifa , Israel

4. Department of Mathematics , Colgate University Hamilton , NY 13346 , USA

Abstract

Abstract Given a finite graph H, the n th member Gn of an H-linear sequence is obtained recursively by attaching a disjoint copy of H to the last copy of H in G n−1 by adding edges or identifying vertices, always in the same way. The genus polynomial Γ G (z) of a graph G is the generating function enumerating all orientable embeddings of G by genus. Over the past 30 years, most calculations of genus polynomials Γ Gn (z) for the graphs in a linear family have been obtained by partitioning the embeddings of Gn into types 1, 2, …, k with polynomials Γ G n j $\begin{array}{} \Gamma_{G_n}^j \end{array}$ (z), for j = 1, 2, …, k; from these polynomials, we form a column vector V n ( z ) = [ Γ G n 1 ( z ) , Γ G n 2 ( z ) , , Γ G n k ( z ) ] t $\begin{array}{} V_n(z) = [\Gamma_{G_n}^1(z), \Gamma_{G_n}^2(z), \ldots, \Gamma_{G_n}^k(z)]^t \end{array}$ that satisfies a recursion Vn (z) = M(z)V n−1(z), where M(z) is a k × k matrix of polynomials in z. In this paper, the Cayley-Hamilton theorem is used to derive a k th degree linear recursion for Γ n (z), allowing us to avoid the partitioning, thereby yielding a reduction from k 2 multiplications of polynomials to k such multiplications. Moreover, that linear recursion can facilitate proofs of real-rootedness and log-concavity of the polynomials. We illustrate with examples.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3