Convergence results for a family of Kantorovich max-product neural network operators in a multivariate setting

Author:

Costarelli Danilo1,Vinti Gianluca1

Affiliation:

1. Department of Mathematics and Computer Sciences 1, Via Vanvitelli 06123-I Perugia Italy

Abstract

Abstract The theory of multivariate neural network operators in a Kantorovich type version is here introduced and studied. The main results concerns the approximation of multivariate data, with respect to the uniform and Lp norms, for continuous and Lp functions, respectively. The above family of operators, are based upon kernels generated by sigmoidal functions. Multivariate approximation by constructive neural network algorithms are useful for applications to neurocomputing processes involving high dimensional data. At the end of the paper, several examples of sigmoidal functions for which the above theory holds have been presented.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference54 articles.

1. Amari, S.—Cichocki, A.—Yang, H. H.: A new learning algorithm for blind signal separation, Advances in neural information processing systems (1996), 757–763.

2. Anastassiou, G. A.: Intelligent Systems: Approximation by Artificial Neural Networks. In: Intelligent Systems Reference Library 19, Springer-Verlag, Berlin, 2011.

3. Anastassiou, G. A.—Coroianu, L.—Gal, S. G.: Approximation by a nonlinear Cardaliaguet-Euvrard neural network operator of max-product kind, J. Comp. Anal. Appl. 12 (2010), 396–406.

4. Angeloni, L.—Vinti, G.: Approximation in variation by homothetic operators in multidimensional setting, Differential Integral Equations 26 (2013), 655–674.

5. Angeloni, L.—Vinti, G.: Convergence and rate of approximation in BVφ(R+N)$BV_\varphi(\mathbb R_+^N)$ for a class of Mellin integral operators, Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni 25 (2014), 217–232.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural network Kantorovich operators activated by smooth ramp functions;Mathematical Methods in the Applied Sciences;2024-07-21

2. Approximation by Mixed Operators of Max-Product–Choquet Type;Approximation and Computation in Science and Engineering;2022

3. Approximation by truncated Lupaş operators of max-product kind;Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics;2021-12-31

4. Inverse Result of Approximation for the Max-Product Neural Network Operators of the Kantorovich Type and Their Saturation Order;Mathematics;2021-12-25

5. Asymptotic Expansion for Neural Network Operators of the Kantorovich Type and High Order of Approximation;Mediterranean Journal of Mathematics;2021-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3