Affiliation:
1. Faculty of Natural Sciences and Mathematics Ss . Cyril and Methodius University Arhimedova , 3 1000 Skopje Republic of Macedonia ,
Abstract
Abstract
A power-associative n-ary groupoid is an n-ary groupoid
G
such that for every element a ∈ G, the n-ary subgroupoid of
G
generated by a is an n-ary subsemigroup of
G
. The class 𝓟
a
of power-associative n-ary groupoids is a variety. A description of free objects in this variety and their characterization by means of injective n-ary groupoids in 𝓟
a
are obtained.
Reference9 articles.
1. Albert, A.: Power-associative rings, Trans. Amer. Math. Soc. 64 (1948), 552–593.10.1090/S0002-9947-1948-0027750-7
2. Bruck, R. H.: A Survey of Binary Systems, Springer-Verlag, Berlin-Götingen-Heidelberg, 1958.
3. Burris, S.—Sankappanavar, H. P.: A Course in Universal Algebra. Grad. Texts in Math., Springer-Verlag, 1981.
4. Celakoska-Jordanova, V.: Ternary groupoid powers, Mat. Bilten 33 (2009), 15–19.
5. Celakoska-Jordanova, V.: Free power-commutative groupoids, Math. Slovaca 65(1) (2015), 23–33.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Free power-slim groupoids;Asian-European Journal of Mathematics;2020-05-20