Affiliation:
1. Faculty of Mathematics and Computer Science Lódź University Banacha 22, 90-238 Lódź Poland
Abstract
Abstract
The aim of the paper is to examine topological properties of disruptions of nonautonomous discrete dynamical system by other “close” systems. Our considerations will be connected with entropy of a system at a point and with stable points of a system.
Reference14 articles.
1. Alsedá, L.—Llibre, J.—Misiurewicz, M.: Combinatorial Dynamics and Entropy in Dimension One, World Scientific, 1993.
2. Block, L. S.—Coppel, W. A.: Dynamics in One Dimension. Lecture Notes in Math. 1513, Springer-Verlag, Berlin, 1992.
3. Čiklová, M.: Dynamical systems generated by functions with connected 𝓖δ graphs, Real Anal. Exchange 30 (2004/2005), 617–638.
4. Dvořáková, J.: Chaos in nonautonomous discrete dynamical systems, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4649–4652.10.1016/j.cnsns.2012.06.005
5. Elaydi, S.—Sacker, R. J.: Global stability of periodic orbits of nonautonomous difference equations in population biology and the Cushing-Henson conjectures, J. Differential Equations 208 (2005), 258–273. https://doi.org/10.1016/j.jde.2003.10.024; http://digitalcommons.trinity.edu/math_faculty/42.10.1016/j.jde.2003.10.024
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On
α
-chaotic points and chaotic (antichaotic) families of functions;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-08-01
2. Measuring chaos by entropy for a finite family of functions;Chaos: An Interdisciplinary Journal of Nonlinear Science;2020-06
3. On the local aspects of distributional chaos;Chaos: An Interdisciplinary Journal of Nonlinear Science;2019-01
4. Distortion of Dynamical Systems in the Context of Focusing the Chaos Around the Point;International Journal of Bifurcation and Chaos;2018-01