Affiliation:
1. Chair for Catheter Technologies and Image Guided Procedures, Otto-von-Guericke University, Magdeburg, Germany
2. Department of Radiology and Nuclear Medicine, Medical Faculty, Otto-von-Guericke University, INKA, Building 53, Rotgerstrasse 9, 39104 Magdeburg, Germany
Abstract
AbstractRadioguided surgery (RGS) is the use of radiation detection probes and handheld gamma cameras in surgery rooms to identify radioactively labeled lesions inside the body with an aim to improve surgical outcome. In today’s surgery, application of these devices is a well-established practice, which provides surgeons with real-time information to guide them to the site of a lesion. In recent years, there have been several major improvements in the technology and design of gamma probes and handheld gamma cameras, enhancing their applications in surgical practices. Handheld gamma cameras, for example, are now moving from single-modality to dual-modality scanners that add anatomical data to the physiologic data, and with that provide more clinical information of the tissue under study. Also, in the last decade, a radioguided surgical technique based on the Cerenkov radiation was introduced, with more improved sensitivity in identifying radioactively labeled lesions. Additionally, recent advances in hybrid tracers have led to more efficient detection of lesions labeled with these tracers. Besides, it seems that combining medical robotics and augmented reality technology with current radioguided surgical practices potentially will change the delivery and performance of RGS in the near future. The current paper aims to give an overview of the physics of RGS and summarizes recent advances in this field that have a potential to improve the application of radioguided surgical procedures in the management of cancer.
Funder
Federal Ministry of Education and Research (BMBF) of Germany
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献