Effective segmentation and classification of tumor on liver MRI and CT images using multi-kernel K-means clustering

Author:

Krishan Abhay1,Mittal Deepti2

Affiliation:

1. Department of Electrical and Instrumentation Engineering, Thapar Institute of Engineering and Technology, Patiala, 147004 Punjab, India

2. Department of Electrical and Instrumentation Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab, India

Abstract

AbstractOur proposed research technique intends to provide an effective liver magnetic resonance imaging (MRI) and computed tomography (CT) scan image classification which would play a significant role in medical dataset especially in feature selection and classification. There are a number of existing research works classifying the liver tumor disease. Early detection of liver tumor will help the patients to get cured rapidly. Our proposed research focuses on the classification of medical images with respect to the classification technique artificial neural network (ANN) to classify an image as normal or abnormal. In the pre-processing step, the input image is selected from the database and adaptive median filtering is used for noise removal. For better enhancement, histogram equalization (HE) is done in the noise-removed images. In the pre-processed images, the texture feature such as gray-level co-occurrence matrix (GLCM) and statistical features are extracted. From the extensive feature set, optimal features are selected using the optimal kernel K-means (OKK-means) clustering algorithm along with the oppositional firefly algorithm (OFA). The proposed method obtained 97.5% accuracy in the classification when compared to the existing method.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3