A comparative study of tapped and untapped pilot holes for bicortical orthopedic screws – 3D finite element analysis with an experimental test

Author:

Ketata Hajer,Affes Fatma,Kharrat Mohamed,Dammak Maher

Abstract

Abstract The aim of this study was to compare the screw-to-bone fixation strength of two insertion techniques: self-tapping screw (STS) and non-self-tapping screw (NSTS). Finite element analysis (FEA) was used for the comparison by featuring three tests (insertion, pull-out and shear) in a human tibia bone model. A non-linear material behavior with ductile damage properties was chosen for the modeling. To validate the numerical models, experimental insertion and pull-out tests were carried out using a synthetic bone. The experimental and numerical results of pull-out tests correlated well. Thread forming was successfully simulated during the insertion process of STS and NSTS. It is demonstrated that the STS generates higher insertion torque, induces a higher amount of stress after the insertion process and relatively more strength under the pull-out and shear tests than the NSTS. However, the NSTS induces more stiffness under the two tests (pull-out and shear) and less damage to the screw-bone interface compared to the STS. It is concluded that the use of STS ensures tighter bony contact and enables higher pull-out strength; however, the use of NSTS improves the stiffness of the fixation and induces less damage to the cortical bone-screw fixation and thus minimum risk is obtained in terms of bone necrosis.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Reference64 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3