Multimodal feature learning and fusion on B-mode ultrasonography and sonoelastography using point-wise gated deep networks for prostate cancer diagnosis

Author:

Zhang Qi12,Xiong Jingyu13,Cai Yehua4,Shi Jun1,Xu Shugong1,Zhang Bo5

Affiliation:

1. Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Xiangying Building, No. 333 Nanchen Road, Shanghai200444, China

2. Hangzhou YITU Healthcare Technology, Hangzhou310000, China

3. The SMART (Smart Medicine and AI-based Radiology Technology) Lab, Institute of Biomedical Engineering, School of Communication and Information Engineering, Shanghai University, Shanghai200444, China

4. Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai200438, China

5. Department of Ultrasound in Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai200120, China

Abstract

AbstractB-mode ultrasonography and sonoelastography are used in the clinical diagnosis of prostate cancer (PCa). A combination of the two ultrasound (US) modalities using computer aid may be helpful for improving the diagnostic performance. A technique for computer-aided diagnosis (CAD) of PCa is presented based on multimodal US. Firstly, quantitative features are extracted from both B-mode US images and sonoelastograms, including intensity statistics, regional percentile features, gray-level co-occurrence matrix (GLCM) texture features and binary texture features. Secondly, a deep network named PGBM-RBM2 is proposed to learn and fuse multimodal features, which is composed of the point-wise gated Boltzmann machine (PGBM) and two layers of the restricted Boltzmann machines (RBMs). Finally, the support vector machine (SVM) is used for prostatic disease classification. Experimental evaluation was conducted on 313 multimodal US images of the prostate from 103 patients with prostatic diseases (47 malignant and 56 benign). Under five-fold cross-validation, the classification sensitivity, specificity, accuracy, Youden’s index and area under the receiver operating characteristic (ROC) curve with the PGBM-RBM2 were 87.0%, 88.8%, 87.9%, 75.8% and 0.851, respectively. The results demonstrate that multimodal feature learning and fusion using the PGBM-RBM2 can assist in the diagnosis of PCa. This deep network is expected to be useful in the clinical diagnosis of PCa.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3