Automatic hypernasality grade assessment in cleft palate speech based on the spectral envelope method

Author:

Zhang Jing1,Yang Sen1,Wang Xiyue1,Tang Ming1,Yin Heng2,He Ling1

Affiliation:

1. College of Electrical Engineering, Sichuan University, Chengdu 610065, China

2. West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China

Abstract

AbstractDue to velopharyngeal incompetence, airflow overflows from the oral cavity to the nasal cavity, which results in hypernasality. Hypernasality greatly reduces speech intelligibility and affects the daily communication of patients with cleft palate. Accurate assessment of hypernasality grades can provide assisted diagnosis for speech-language pathologists (SLPs) in clinical settings. Utilizing a support vector machine (SVM), this paper classifies speech recordings into four grades (normal, mild, moderate and severe hypernasality) based on vocal tract characteristics. Linear prediction (LP) analysis is widely used to model the vocal tract. Glottal source information may be included in the LP-based spectrum. The stabilized weighted linear prediction (SWLP) method, which imposes the temporal weights on the closed-phase interval of the glottal cycle, is a more robust approach for modeling the vocal tract. The extended weighted linear prediction (XLP) method weights each lagged speech signal separately, which achieves a finer time scale on the spectral envelope than the SWLP method. Tested speech recordings were collected from 60 subjects with cleft palate and 20 control subjects, and included a total of 4640 Mandarin syllables. The experimental results showed that the spectral envelope of normal speech decreases faster than that of hypernasal speech in the high-frequency part. The experimental results also indicate that the SWLP- and XLP-based methods have smaller correlation coefficients between normal and hypernasal speech than the LP method. Thus, the SWLP and XLP methods have better ability to distinguish hypernasal from normal speech than the LP method. The classification accuracies of the four hypernasality grades using the SWLP and XLP methods range from 83.86% to 97.47%. The selection of the model order and the size of the weight function are also discussed in this paper.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Variational mode decomposition based features for detection of hypernasality in cleft palate speech;Biomedical Signal Processing and Control;2024-11

2. Automatic Detection of Hypernasality in Cleft Palate Speech Using Phase Feature;2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence);2024-01-18

3. Voice pathology detection and classification from speech signals and EGG signals based on a multimodal fusion method;Biomedical Engineering / Biomedizinische Technik;2021-11-29

4. Sch-net: a deep learning architecture for automatic detection of schizophrenia;BioMedical Engineering OnLine;2021-08-03

5. Cumulative Tsallis entropy based on multi-scale permuted distribution of financial time series;Physica A: Statistical Mechanics and its Applications;2020-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3