Asymptotic Approximations to the Non-Isothermal Distributed Activation Energy Model for Bio-Mass Pyrolysis

Author:

Dhaundiyal Alok1,Singh Suraj B.2

Affiliation:

1. Faculty of Mechanical Engineering, Mechanical Engineering PhD School , Szent Istvan University , Godollo , Hungary

2. Department of Mathematics, Statistics and Computer Science , Govind Ballabh Pant University of Agriculture and Technology , Pantnagar , Uttarakhand 263153 , India

Abstract

Abstract This paper describes the influence of some parameters significant to biomass pyrolysis on the numerical solutions of the non-isothermal nth order distributed activation energy model (DAEM) using the Gamma distribution and discusses the special case for the positive integer value of the scale parameter (λ), i.e. the Erlang distribution. Investigated parameters are the integral upper limit, the frequency factor, the heating rate, the reaction order, and the shape and rate parameters of the Gamma distribution. Influence of these parameters has been considered for the determination of the kinetic parameters of the non-isothermal nth order Gamma distribution from the experimentally derived thermoanalytical data of biomass pyrolysis. Mathematically, the effect of parameters on numerical solution is also used for predicting the behaviour of the unpyrolysized fraction of biomass with respect to temperature. Analysis of the mathematical model is based upon asymptotic expansions, which leads to the systematic methods for efficient way to determine the accurate approximations. The proposed method, therefore, provides a rapid and highly effective way for estimating the kinetic parameters and the distribution of activation energies.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Control and Systems Engineering

Reference37 articles.

1. 1. Anthony D.B. (1974), Rapid devolatilization and hydrogasification of pulverized coal, DSc. thesis, Massachusetts Institute of Technology.

2. 2. Armstrong R., Kulesza B.L.J. (1981), An approximate solution to the equation x = exp (−x/ϵ), Bull. Institute of Mathematics and its Applications, 17, 56.

3. 3. Brown M. E. (2001), Introduction to Thermal Analysis, Techniques and Applications, Kluwer Academic Publisher, Dordrecht.

4. 4. Burnham A.K., Braun R.L. (1999), Global kinetic analysis of complex materials, Energy Fuels, 13, 1-22.10.1021/ef9800765

5. 5. Burnham A.K., Schmidt B.J., and Braun R.L (1995), A test of parallel reaction model using kinetic measurements on hydrous pyrolysis residues, Geochem, 23, 931-939.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3