Multi-spectral and Topographic Fusion for Automated Road Extraction

Author:

Puttinaovarat Supattra1,Horkaew Paramate2

Affiliation:

1. Prince of Songkla University, Surat Thani Campus, Surat Thani, Thailand

2. Suranaree University of Technology Muang, Muang, Thailand

Abstract

AbstractRoad geometry is pertinent information in various GIS studies. Reliable and updated road information thus calls for conventional on-site survey being replaced by more accurate and efficient remote sensing technology. Generally, this approach involves image enhancement and extraction of relevant features, such as elongate gradient and intersecting corners. Thus far, its implication is often impeded by wrongly extraction of other urban peripherals with similar pixel characteristics. This paper therefore proposes the fusion of THEOS satellite image and topographic derivatives, obtained from underlying Digital Surface Models (DSM). Multi-spectral indices in thematic layers and surface properties of designated roads were both fed into state-of-the-art machine learning algorithms. The results were later fused, taken into account consistently leveled road surface. The proposed technique was thus able to eliminate irrelevant urban structures such as buildings and other constructions, otherwise left by conventional index based extraction. The numerical assessment indicates recall of 84.64%, precision of 97.40% and overall accuracy of 97.78%, with 0.89 Kappa statistics. Visual inspection reported herewith also confirms consistency with ground truth reference.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Reference100 articles.

1. Survey on methods of road extraction using satellite image;International Journal of Engineering Research and Technology,2014

2. Spectral resolution requirements for mapping urban areas;Geoscience and Remote Sensing, IEEE Transactions on,2003

3. Urban road network extraction from very high resolution RGB aerial images and DSM data;In 34th Asian Conference on Remote Sensing,2013

4. Road extraction from LIDAR data using support vector machine classification;Photogrammetric Engineering & Remote Sensing,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3