Free vibration behavior of laminated composite stiffened elliptic parabolic shell panel with cutout

Author:

Sahoo Sarmila1

Affiliation:

1. 1Department of Civil Engineering, Heritage Institute of Technology, Kolkata 700107, India

Abstract

AbstractIn this paper free vibration behavior of laminated composite stiffened elliptic parabolic shell has been analyzed in terms of natural frequency and mode shape. Finite element method has been applied using an eight-noded curved quadratic isoparametric element for shell with a three noded curved beam element for stiffener. Cross and angle ply shells with different edge conditions have been studied varying the size and position of the cutouts to arrive at a set of inferences of practical engineering significances.

Publisher

Walter de Gruyter GmbH

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Aerospace Engineering,Building and Construction,Civil and Structural Engineering,Architecture,Computational Mechanics

Reference44 articles.

1. Accurate Dynamic Response of Laminated Composites and Sandwich Shells using Higher Order Zigzag Theory Thin Walled;Kumar;Struct,2014

2. Recent Research Advances on The Dynamic Analysis of Composite Shells;Qatu;Struct,2000

3. Vibration of Laminated Composite Shells with Cutouts using Higher Order Shear Deformation Theory;Kumar;J Sci Eng Res,2013

4. A Unified Chebyshev Ritz Formulation for Vibration Analysis of Composite Laminated Deep Open Shells with Arbitrary Boundary Conditions;Ye;Arch Appl Mech,2014

5. Behaviour of Paraboloidal of Revolution Shell using Cross - ply and Antisymmetric Angle - ply Laminates;Dey;Comput Struct,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3