Effects of machinery trafficking in an agricultural soil assessed by Electrical Resistivity Tomography (ERT)

Author:

García-Tomillo Aitor,Figueiredo Tomás de,Dafonte Jorge Dafonte,Almeida Arlindo,Paz-González Antonio

Abstract

Abstract Soil compaction is a serious problem, which is aggravated due to its difficulty to locate and reverse. Electrical resistivity tomography (ERT) is a non-invasive geophysical method that can be used to identify compacted areas, soil horizon thickness and assess soil physical properties. This study assesses the relationship between ERT and soil compaction. Data were collected on a 4-m transect in a fallow plot located at Braganca (Portugal). Measurements were performed before and after tillage and tractor passage. Soil samples at different depths (0-0.05, 0.05-0.1 and 0.1-0.2 m depth) were taken to determine: soil bulk density, porosity, saturated hydraulic conductivity and soil water content. The effect of tillage and tractor passage was more significant on the first 0.05 m depth. In the wheel track areas, ERT suffered a reduction of about 40%, saturated hydraulic conductivity decreased by 70% and bulk density increased by 24%. These results proved that ERT can be a useful tool for assessing soil compaction.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences

Reference4 articles.

1. Two - Dimensional Spatial and Temporal Variation of Soil Physical Properties in Tillage Systems Using Electrical Resistivity Tomography Agronomy;Basso;Journal,2010

2. Identifying the charac - teristic scales of soil structural recovery after compaction from three in - field methods of monitoring;Besson;Geoderma,2013

3. Soil properties influencing apparent electrical conductivity Computers and Electronics in;Friedman;review Agriculture,2005

4. Application of EM and ERT methods in estimation of saturated hydraulic conductivity in unsaturated soil of;Farzamian;Journal Applied Geophysics,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3