Accurate noise-robust classification of Bacillus species from MALDI-TOF MS spectra using a denoising autoencoder

Author:

Uvarova Yulia E.1,Demenkov Pavel S.123ORCID,Kuzmicheva Irina N.3,Venzel Artur S.13,Mischenko Elena L.1,Ivanisenko Timofey V.12,Efimov Vadim M.1,Bannikova Svetlana V.1,Vasilieva Asya R.1,Ivanisenko Vladimir A.123,Peltek Sergey E.12

Affiliation:

1. Federal Research Center Institute of Cytology and Genetics SB RAS , 630090 Novosibirsk , Russia

2. Kurchatov Center for Genome Research, Institute of Cytology and Genetics SB RAS , 630090 Novosibirsk , Russia

3. Novosibirsk State University , 630090 Novosibirsk , Russia

Abstract

Abstract Bacillus strains are ubiquitous in the environment and are widely used in the microbiological industry as valuable enzyme sources, as well as in agriculture to stimulate plant growth. The Bacillus genus comprises several closely related groups of species. The rapid classification of these remains challenging using existing methods. Techniques based on MALDI-TOF MS data analysis hold significant promise for fast and precise microbial strains classification at both the genus and species levels. In previous work, we proposed a geometric approach to Bacillus strain classification based on mass spectra analysis via the centroid method (CM). One limitation of such methods is the noise in MS spectra. In this study, we used a denoising autoencoder (DAE) to improve bacteria classification accuracy under noisy MS spectra conditions. We employed a denoising autoencoder approach to convert noisy MS spectra into latent variables representing molecular patterns in the original MS data, and the Random Forest method to classify bacterial strains by latent variables. Comparison of the DAE-RF with the CM method using the artificially noisy test samples showed that DAE-RF offers higher noise robustness. Hence, the DAE-RF method could be utilized for noise-robust, fast, and neat classification of Bacillus species according to MALDI-TOF MS data.

Funder

Ministry of Science and Higher Education of the Russian Federation project “Kurchatov Center for World-Class Genomic Research“

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3