Length Scale Plasticity: A Review from the Perspective of Dislocation Nucleation

Author:

Bagheripoor Mahdi,Klassen Robert

Abstract

Abstract Sub-micron and nano-size material systems and components are now regularly being fabricated for use in a wide variety of new applications. These systems exhibit mechanical properties that can be drastically different from their macroscopic counterparts and recently much work has focused on the size effects on the mechanical behaviour of materials. Although the size dependent behaviour has been observed in all of the crystal structures, the governing mechanisms have been found to be different. Different theories have been proposed to describe the size dependent behaviour of metallic samples and the governing mechanisms and it is well known that the surface plays an important role in the plasticity of small scales. Some of the theories indicate the importance of surface in nucleating dislocation and some other ones consider the surface importance as its effect on truncating dislocation loops and activation of internal sources. Moreover, recent studies have revealed that while dislocation based deformation in fcc metals is not very sensitive to temperature, deformation is strongly temperature dependent in bcc metals. The effect of orientation is more clear in the size scale behavior of hcp metals. This review covers recent literature that has focused on uniaxial compression of single crystals at the sub-micron and nanometer scale. The fundamental mechanisms governing the size dependent mechanical behaviour of different crystal structures are described. The effect of fabrication process and current experimental techniques for micro and nano-compression are studied as well.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

Reference24 articles.

1. a -;Greer;Mat Sci Eng Struct,2008

2. a -;Budiman;Mat Sci Eng Struct,2012

3. Length scale plasticity : a review from the perspective of dislocation nucleation;Liu;Nat Commun J Appl Mech - T Asme,2014

4. a -;Uchic;Mat Sci Eng Struct,2005

5. Theory of Dislocations nd Edition and Sons : New York;Hirth;by,1982

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3