Influence of Magnesia on Demoulding Strength of Colloidal Silica-Bonded Castables

Author:

Zhang Yang1,Zhu Lingling2,Chen Liugang3,Liu Luoqiang1,Ye Guotian1

Affiliation:

1. Henan Key Laboratory of High Temperature Functional Ceramics, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou450001

2. Henan Key Laboratory of High Temperature Functional Ceramics, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou450001; Fax: +86-371-67781590

3. Henan Key Laboratory of High Temperature Functional Ceramics, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou450001; Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium

Abstract

AbstractThe change in demoulding strength of colloidal silica-bonded castables with and without magnesia is investigated with emphasis on the relationship between the demoulding strength and chemical bond changes. It was confirmed that the demoulding strength was raised with the presence of magnesia in colloidal silica-bonded castables because of the increased chemical bonding between the sol particles. The X-ray photoelectron spectroscopy (XPS) and the Fourier transformation infrared spectroscopy (FTIR) results indicate the formation of new Si–O–Mg chemical bond from the decreased O 1s and Si 2p binding energy, and the appearance of weak vibration peaks at 668 and 419 cm−1 in the spectrum of colloidal silica with the addition of MgO after curing at 30°C for 24 hours. The reaction between colloidal silica and magnesia could promote the formation of –Si–O–Mg–O–Si–bonds, which is the primary reason for the demoulding strength improvement.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3