Tuning the Structure and the Mechanical Properties of Ultrafine Grain Al–Zn Alloys by Short Time Annealing

Author:

Bobruk E.V.,Sauvage X.,Zakirov A.M.,Enikeev N.A.

Abstract

Abstract Solid solution treated Al-Zn alloys with different Zn contents (10 and 30 wt.%) have been nanostructured by severe plastic deformation (SPD) via equal-channel angular pressing method. In-situ transmission electron microscopy observations have been used to follow microstructure evolutions upon annealing. It was shown that SPD leads to the precipitation of Zn particles and that this partial solid solution decomposition was more pronounced in the Al- 30%Zn alloy. Annealing at temperatures in range of 200 to 250 °C led to visible dissolution of Zn particles in both alloys and to formation of extensive grain boundary segregations of Zn. This approach helped to design short term annealing treatments leading to specific ultrafine grain structures that could be achieved by static annealing on bulk samples. Last, the tensile behavior of these materials has been investigated with a special emphasis on the influence of the strain rate on the yield stress and on the elongation to failure. It is shown that in any case the yield stress is mainly controlled by the grain size, while a low volume fraction of Zn phase leads to a relatively modest ductility.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

Reference4 articles.

1. and;Raab;Materials Science Engineering,2005

2. and;Nasedkina;Journal of Alloys Compounds,2017

3. and;Cui;Journal of Phase Equilibria Diffusion,2006

4. on;Bobruk;Reviews Advanced Materials Science,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3