Causal effect on a target population: A sensitivity analysis to handle missing covariates

Author:

Colnet Bénédicte1,Josse Julie2,Varoquaux Gaël3,Scornet Erwan4

Affiliation:

1. Soda Project-team, Premedical Project-team, INRIA, and Centre de Mathémathiques Appliquées, Institut Polytechnique de Paris , Palaiseau , France

2. Premedical Project Team, INRIA Sophia-Antipolis , Montpellier , France

3. Soda Project-team , INRIA Saclay , France

4. Centre de Mathémathiques Appliquées, UMR 7641, École Polytechnique, CNRS, Institut Polytechnique de Paris , Palaiseau , France

Abstract

Abstract Randomized controlled trials (RCTs) are often considered the gold standard for estimating causal effect, but they may lack external validity when the population eligible to the RCT is substantially different from the target population. Having at hand a sample of the target population of interest allows us to generalize the causal effect. Identifying the treatment effect in the target population requires covariates to capture all treatment effect modifiers that are shifted between the two sets. Standard estimators then use either weighting (IPSW), outcome modeling (G-formula), or combine the two in doubly robust approaches (AIPSW). However, such covariates are often not available in both sets. In this article, after proving L 1 {L}^{1} -consistency of these three estimators, we compute the expected bias induced by a missing covariate, assuming a Gaussian distribution, a continuous outcome, and a semi-parametric model. Under this setting, we perform a sensitivity analysis for each missing covariate pattern and compute the sign of the expected bias. We also show that there is no gain in linearly imputing a partially unobserved covariate. Finally, we study the substitution of a missing covariate by a proxy. We illustrate all these results on simulations, as well as semi-synthetic benchmarks using data from the Tennessee student/teacher achievement ratio (STAR), and a real-world example from critical care medicine.

Publisher

Walter de Gruyter GmbH

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3