Affiliation:
1. Department of Mathematics Indian Institute of Technology Roorkee Roorkee-247667 , Uttarakhand India
Abstract
Abstract
Let A be the set of all analytic functions f defined on the open unit disk D satisfying f(0) = f'(0) − 1 = 0. Let φNe
(z) := 1 + z − z
3
=3 be the recently introduced Carathéodory function which maps the unit circle
∂
D
$
\partial \mathbb{D}
$
D onto a 2-cusped kidney-shaped curve called nephroid given by
(
(
u
−
1
)
2
+
v
2
−
4
a
)
3
−
4
v
2
2
=
0.
${{\left( {{(u-1)}^{2}}+{{v}^{2}}-\frac{4}{a} \right)}^{3}}-\frac{4{{v}^{2}}}{2}=0.$
In this paper, we determine the best possible estimate on the real β so that for some analytic p satisfying p(0) = 1 the following subordination-implication holds:
1
+
β
z
p
′
(
z
)
p
j
(
z
)
≺
F
(
z
)
⇒
p
(
z
)
≺
φ
N
e
(
z
)
,
j
=
0
,
1
,
2
,
$$1+\beta \frac{z{{p}^{\prime }}(z)}{{{p}^{j}}(z)}\prec \mathcal{F}(z)\Rightarrow p(z)\prec {{\varphi }_{Ne}}(z),\quad j=0,1,2,$$
where F(z) is some Carathéodory function with special geometries like right/left-half of Bernoulliφs lemniscate, cardioid, lune, eight-shaped, etc. As applications, we establish sufficient conditions for the Ma-Minda family of nephroid starlike functions given by
S
N
e
*
:
=
{
f
∈
A
:
z
f
′
(
z
)
f
(
z
)
≺
φ
N
e
(
z
)
}
.
$$\mathcal{S}_{Ne}^{*}:=\left\{ f\in \mathcal{A}:\frac{z{{f}^{\prime }}(z)}{f(z)}\prec {{\varphi }_{Ne}}(z) \right\}.$$
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献