Affiliation:
1. Professor Emeritus of Mathematics, Department of Mathematics , Shippensburg University , Shippensburg , PA , USA
Abstract
Abstract
Let f(x) ∈ ℤ[x] be monic and irreducible over ℚ, with deg(f) = n. Let K = ℚ(θ), where f(θ) = 0, and let ℤ
K
denote the ring of integers of K. We say f(x) is monogenic if {1, θ, θ
2, …, θ
n−1} is a basis for ℤ
K
. Otherwise, f(x) is called non-monogenic. In this article, we give necessary and sufficient conditions for a certain class of polynomials to be monogenic. Using these conditions allows us to generate infinite families of non-monogenic polynomials. In particular, for quadrinomials our results show that there exist infinitely many primes p ≥ 3, and integers t ≥ 1 coprime to p, such that f(x) = x
p
− 2ptx
p−1 + p
2
t
2
x
p−2 + 1 is non-monogenic. Finally, we illustrate this situation with an explicit example.
Reference25 articles.
1. Ahmad, S.—Nakahara, T.—Hameed, A.: On certain pure sextic fields related to a problem of Hasse, Internat. J. Algebra Comput. 26(3) (2016), 577–583.
2. Ahmad, S.—Nakahara T.—Husnine S. M.: Power integral bases for certain pure sextic fields, Int. J. Number Theory 10(8) (2014), 2257–2265.
3. Brauer, A.: On the irreducibility of polynomials with large third coefficient, Amer. J. Math. 70 (1948), 423–432.
4. Cohen, H.: A Course in Computational Algebraic Number Theory, Springer-Verlag, 2000.
5. Dedekind, R.: Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen, Gött. Abhandlungen 23(1) (1978), 3–37
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献