Facile and green hydrothermal synthesis of MgAl/NiAl/ZnAl layered double hydroxide nanosheets: a physiochemical comparison

Author:

Kamal Nur Alyaa1,Pungot Noor Hidayah1,Che Soh Siti Kamilah2,Ahmad Tajuddin Nazrizawati1

Affiliation:

1. 54703 School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA , 40450 Shah Alam , Selangor , Malaysia

2. 630775 Faculty of Science and Marine Environment, Universiti Malaysia Terengganu , 21030 Kuala Nerus , Terengganu , Malaysia

Abstract

Abstract Layered double hydroxide (LDH) exhibits a remarkable trait referred to as the ‘memory effect,’ demonstrating its capacity to reconstruct its layered structure from calcined oxides through hydrothermal treatment. Its uniqueness has garnered significant interest from researchers in both industrial and academic domains. Various methods have been utilized to synthesize LDH but most LDH studies still utilize alkali precipitants which might taint the final LDH product. Thus, in this study, layered double hydroxides involving MgAl/NiAl/ZnAl were synthesized via an alkali-free hydrothermal approach in which the formed precipitates of LDH were thermally destroyed via calcination at 450 °C before undergoing a rehydration treatment at 110 °C for 24 h to restore its original structure. Particularly, the physiochemical properties of MgAl/NiAl/ZnAl LDH have been undertaken by multiple techniques such as Powder X-ray Diffraction (PXRD), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscope (FESEM) and Fourier-transform infrared spectroscopy (FTIR). The resultant products exhibited exceptional crystallinity, accompanied by notably larger crystallite sizes and crystallinity index, particularly post-hydrothermal treatment. Among the fresh and calcined products studied, those subjected to HTM (4:1) treatment demonstrated the highest specific surface area and crystallinity surpassing both the fresh and calcined samples. In essence, this research showcased how utilizing the hydrothermal approach resulted in the most substantial increase in crystallite size and specific surface area.

Funder

Incentive Research Grant

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3