Affiliation:
1. First and Emergency Aid Program, Medical Services and Techniques Department, Vocational School of Health Services, Ibrahim Cecen University , Agri , Turkey
2. Department of Biology, Faculty of Science, Ataturk University , Erzurum , Turkey
Abstract
Abstract
Poly-N-acetyl-d-glucosamine (CH; chitin) is the main component of the insect skeleton, fungal cell wall, and many crustaceans, including crab and shrimp. CH is the most abundant in nature after cellulose, and it has a complex and hardly soluble structure. Poly-d-glucosamine (CHO; chitosan) is a soluble derivative of CH produced by deacetylation used in many fields, including human health. This study carried out the cytotoxic, genotoxic, and oxidative effects of CHO on human whole blood (hWB) and lymphocytes (LYMs) in dose ranges 6.25–2000 μg/mL, in vitro. Total antioxidant capacity (TAC) and total oxidant status (TOS) analyzes were performed on plasma to appreciate oxidative stress. 3-(4,5-Dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays were applied to understand the cytotoxicity. Chromosomal aberration (CA) and micronucleus (MN) methods were practiced to evaluate genotoxicity. 6.25–150 μg/mL doses increased TAC and decreased TOS. A decreasing and increasing curve from 200 to 2000 μg/mL on TAC and TOS values were determined, respectively. 0–250 μg/mL doses did not provide any cytotoxic data. However, 500–2000 μg/mL doses showed increasing cytotoxicity and genotoxicity. The study results showed that CHO does not pose a toxic risk to human health at low doses but may pose a threat at high doses.
Subject
General Biochemistry, Genetics and Molecular Biology