Evaluation and enzyme-aided enhancement of anti-photoaging properties of Camellia japonica in UVA-irradiated keratinocytes

Author:

Oh Jung Hwan1,Nam Gi Baeg2,Karadeniz Fatih1,Kong Chang-Suk13ORCID,Ko Jaeyoung2

Affiliation:

1. Marine Biotechnology Center for Pharmaceuticals and Foods , College of Medical and Life Sciences, Silla University , Busan 46958 , Korea

2. AMOREPACIFIC Research and Innovation Center , Yongin 17074 , Korea

3. Department of Food and Nutrition , College of Medical and Life Sciences, Silla University , Busan 46958 , Korea

Abstract

Abstract Exposure to ultraviolet (UV) radiation is the main reason behind extrinsic skin aging. Changes due to chronic UV exposure are called photoaging. Natural products are effective ingredients against UV-mediated skin damage. Present study investigated the anti-photoaging properties of Camellia japonica flowers which possess various bioactivities. To enrich the extracts of C. japonica flowers, pectinase and beta-glucosidase treatment was employed. Anti-photoaging effect was screened using the changes in MMP-1 and collagen levels in UVA-irradiated human HaCaT keratinocytes. The crude extract of C. japonica flowers (CE) was shown to decrease the UVA-induced MMP-1 secretion while attenuating the collagen levels. Pectinase and beta-glucosidase treated CE (ECE) showed increased anti-photoaging effects against UVA-induced changes in MMP-1 and collagen production. Camellenodiol (CMD), a known triterpenoid from C. japonica, isolated as the active ingredient of ECE and its anti-photoaging effect was screened. Results showed that CMD ameliorated the UVA-induced deterioration in collagen levels by suppressing MMP-1 production in transcriptional level. CMD treatment downregulated the phosphorylation of p38, ERK, and JNK MAPKs along their downstream effectors, c-Fos, and c-Jun. In conclusion, enzyme-assisted extraction of C. japonica flowers was suggested to enhance the anti-photoaging properties suggestively through high bioactive content such as CMD.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3