Subthreshold Behaviors of Nanoscale Silicon and Germanium Junctionless Cylindrical Surrounding-Gate MOSFETs

Author:

Jiang Chunsheng1,Liang Renrong1,Wang Jing1,Xu Jun1

Affiliation:

1. Tsinghua National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University , Beijing 100084, China

Abstract

Abstract When the traditional planar metal-oxide-semiconductor-field-effect transistors (MOSFETs) encounter insurmountable bottleneck of static power dissipation, junctionless transistor (JLT) becomes a promising candidate for sub-22 nm nanoscale devices due to its simpler fabrication process and better short-channel performances. Subthreshold behaviors dominate the standby power of nanoscale JLTs. In this chapter, a physics-based analytical model of electrostatic potential for both silicon and germanium short-channel junctionless cylindrical surrounding-gate (JLCSG) MOSFETs operated in the subthreshold regime is proposed, in which the full twodimensional (2D) Poisson’s equation is solved in the channel region by a method of series expansion. The expression of the proposed electrostatic potential is completely rigorous and explicit. Based on this result, the expressions of threshold voltage, subthreshold drain current, and subthreshold swing for JLCSG MOSFETs are derived. Subthreshold behaviors are studied in detail by changing different device parameters and bias conditions, including doping concentration, channel radius, gate length, gate equivalent oxide layer thickness, drain voltage, and gate voltage. Results predicted by all the analytical models agree well with numerical solutions from the three-dimensional simulator. These analytical models can be used to investigate the operating mechanisms of nanoscale JLCSG MOSFETs and to optimize their device performances.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Materials Science,General Chemistry

Reference51 articles.

1. Kahng D, Atalla M M. Silicon–silicon dioxide field induced surface devices. InThe IRE Solid-State Device Res. Conf . Pittsburgh, PA, 1960.

2. Schaller R R. Moore’s law: Past, present and future. Spectrum, IEEE 1997, 34, 52–9.

3. Gusev E P, Buchanan D A, Cartier E, Kumar A, DiMaria D, Guha S, AjmeraA. Ultrathin high-K gate stacks for advanced CMOS devices. InElectron Devices Meeting, 2001. IEDM’01. Technical Digest, IEEE 2001, 20–1.

4. Collaert N, Keersgieter A D, Dixit A, Ferain I, Lai L S, Lenoble D, Jurczak M. Multi-gate devices for the 32nm technology node and beyond. Solid State Electron . 2008, 52, 1291–6.

5. Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Murphy R. Nanowire transistors without junctions. Nature Nanotechnol . 2010, 5, 225–9.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3