Fixation of copper-protein formulation in wood: Part 2. Molecular mechanism of fixation of copper(II) in cellulose, lignin and wood studied by EPR

Author:

Hoffmann Stanislaw K.,Goslar Janina,Ratajczak Izabela,Mazela Bartłomiej

Abstract

Abstract Electron paramagnetic resonance (EPR) spectra were recorded for copper(II) ions in cellulose, lignin and pine sapwood impregnated with a water based formulation containing CuSO4·5 H2O, tannic acid and animal protein SOLUTEIN. EPR parameters were derived from computer-simulated spectra. The parameters were interpreted in terms of molecular orbital theory giving coefficients of spin delocalization onto ligands. Five different spectra of chemically fixed complexes were identified. The complexes were octahedral with a different degree of elongation. For a copper concentration higher than approximately 0.5%, the additional EPR signal from the precipitated CuSO4·5 H2O salt appears. Two possible coordination sites are proposed for fixed copper complexes in cellulose structure and a single site is proposed for copper in a lignin. These complexes are different from the copper complex in wood, where Cu(H2O)4O2 octahedral complex exists with apical coordination to two oxygen atoms of deprotonated hydroxyl groups of polymeric units. When tannic acid is added to the impregnating solution, copper ions are strongly coordinated in a square-planar geometry of CuO4 and are easily leached. The copper-SOLUTEIN complex yields a distinguished EPR spectrum only in the impregnating solution, but not in the wood. Except for the copper(II) EPR spectra, where the signals from free radicals were detected in wood and lignin with a concentration in the order of magnitude of 1017 g-1 dependent on wood treatment.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3