Caffeine-Induced Surface Blebbing and Budding in the Acellular Slime Mold Physarum polycephalum

Author:

Kukulies J.1,Stockem W.1,Wohlfarth-Bottermann K. E.1

Affiliation:

1. Institut für Cytologie, Universität Bonn, Ulrich-Haberland-Str. 61 a, D-5300 Bonn, Bundesrepublik Deutschland

Abstract

The mechanism of plasma membrane proliferation was studied in the acellular slime mold Physarum polycephalum with the aid of light and electron microscopical techniques. Treatment of protoplasmic drops with a Tris-buffered 15 mᴍ caffeine solution causes surface blebbing and budding over periods of 5-90 min. The process of surface blebbing is coupled to a 5-10-fold increase of the surface area in conjunction with characteristic changes in cytoplasmic morphol­ogy. Successive constriction of blebs exhibiting different sizes and degree of hyalo-granuloptasmic separation leads to the formation of numerous spherical caffeine droplets. During the process of surface budding and droplet formation the total surface area of the original (genuine) protoplasmic drop is not reduced, but continues to grow. Freeze-etch studies show that caffeine concomitantly causes characteristic changes in the fine structure of the plasma membrane. During the initial phase of surface blebbing the original density of intramembranous particles (IMP) is reduced from 3676/μm2 to 1669/μm2 and the PF:EF ratio (IMP/μm2 protoplasmic face: exoplasmic face) shifts from 2.4:1 to 2.8:1. When surface budding is completed the IMP-density in the plasma membrane of single caffeine droplets increases again to 2289/μm2 and the PF:EF ratio changes to 1.5:1. Simultaneously, the isolated caffeine droplets produce numerous small hyaline membrane protrusions, which are pinched off and contain no IMP. Control experiments demonstrate that Tris-buffer without caffeine also shows a weak capacity to induce surface blebbing, to change the IMP-density and the PF:EF ratio (2443/μm2; 1.5:1); but Tris-buffer fails to cause surface budding. On the other hand, different concentrations of sucrose (25-200 mᴍ) can supress to a certain degree both caffeine- and Tris-buffer-induced surface blebbing, but not caffeine-dependent surface budding. The caffeine-effect is reversible insofar as protoplasmic drops with blebbing and budding activity recover to normal morphology, fine structure and locomotion when transferred to physiological conditions. The mechanisms of successive changes in plasma membrane morphology as well as the mode of a participation of the actomyosin system in cell surface dynamics are discussed.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Network topology enables efficient response to environment in Physarum polycephalum;Physical Biology;2023-05-16

2. Network topology enables efficient response to environment inPhysarum polycephalum;2022-11-13

3. Stress signalling in acellular slime moulds and its detection by conspecifics;Philosophical Transactions of the Royal Society B: Biological Sciences;2020-05-18

4. Habituation in non-neural organisms: evidence from slime moulds;Proceedings of the Royal Society B: Biological Sciences;2016-04-27

5. In memoriam: Karl-Ernst Wohlfarth-Bottermann (1923–1997);European Journal of Protistology;1997-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3