Author:
Lim Joo Hyun,Lee Hyo Jung,Pak Youngmi Kim,Kim Won-Ho,Song Jihyun
Abstract
AbstractThe low-density lipoprotein receptor (LDLR) plays a central role in cholesterol homeostasis. Here, we provide evidence that an increase in endoplasmic reticulum (ER) stress response or a disturbance of mitochondrial function inhibits LDLR expression in human liver Sk-Hep1 cells. Both organelle stresses triggered activation of activating transcription factor-3 (ATF3), which subsequently reduced LDLR expression. Serial deletion studies revealed that theLDLRpromoter region within -234 bp was involved in the repression of LDLR by ATF3. In addition, we identified the region between -8 and -3 of LDLR promoter region as a putative binding site for ATF3 by using deletion construct lacking 6 bp nucleotide corresponding to this region. Transfection ofATF3-specific siRNA rescued LDLR expression under organelle stress, indicating that ATF3 was mainly responsible for the repression of LDLR by these stressors. Additionally, chromatin immunoprecipitation revealed that ATF3 directly binds to the LDLR promoter in a stress-dependent manner. The unique sterol-independent LDLR repression by organelle stress via ATF3 demonstrated here could be involved in obesity-related hypercholesterolemia, which can lead to insulin resistance and type 2 diabetes.
Subject
Clinical Biochemistry,Molecular Biology,Biochemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献