Selective screening: isolation of fungal strains from contaminated soils in Austria

Author:

Poyntner Caroline1,Prem Max1,Mann Oliver2,Blasi Barbara1,Sterflinger Katja1

Affiliation:

1. VIBT EQ Extremophile Center , Department of Biotechnology , University of Natural Resources and Life Sciences (BOKU) , Muthgasse 18, 1190 , Vienna , Austria

2. Department of Organic Chemistry , ESW Consulting Wruss ZT GmbH , Rosasgasse 25-27, 1120 , Vienna , Austria

Abstract

Summary Microorganisms are potent contributors to maintaining a safe environment as they are able to degrade organic toxicants. For environmental applications, mostly bacteria are used while fungal strains have received less attention. However, they are able to degrade highly persistent organic contaminants and survive extreme conditions, and may thus be promising organisms. To find new fungal candidates for these applications, twelve soil samples from polycyclic aromatic hydrocarbon (PAH) contaminated sites in Austria were used to isolate fungal strains. A microplate screening method using PAH contaminated soil as inoculant was set up to isolate fungal strains being able to live in presence of toluene, hexadecane, or polychlorinated biphenyl 126. Not many microbial strains are known that degrade these three contaminants, while the PAH contamination acted as selective pressure for the soil microbiota. After obtaining pure cultures, the fungal strains were further screened for their ability to live in the presence of one of the three contaminant substrates. The potential for technical application of the 11 best performing strains, identified using ITS and 18S rDNA, is discussed. The presented microtiter plate screening method is a cost efficient and quick approach to identify fungal strains for pollutant degradation and results in candidates with a high relevance for bioremediation techniques.

Publisher

Walter de Gruyter GmbH

Subject

Soil Science,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3